RESEARCH MEMORANDUM PRESSURE DISTRIBUTIONS ON TRIANGULAR AND RECTANGULAR WINGS TO HIGH ANGLES OF ATTACK - MACH NUMBERS 2,46 AND 3,36 By George E. Kaattari Ames Aeronautical Laboratory Moffett Field, Calif. | massification range and (- page to Unclassified) | |---| | By Misson of Mish Tich Pub Munouncement #17 | | By 14 April La | | GRADE OF OFFICER MARING CHARLES IN COMMENT | | of makeupal contract information affection the Whitenal Malenas of the Water States will be manufactured. | This material contains information affecting the National Defense of the United States within the meaning of the aspionage laws, Title 18, U.S.C., Secs. 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law. # NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON January 18, 1955 CONFIDENTIAL 20 ξ - . NACA RM A54J12 #### NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS #### RESEARCH MEMORANDUM #### PRESSURE DISTRIBUTIONS ON TRIANGULAR AND RECTANGULAR WINGS TO HIGH ANGLES OF ATTACK - MACH NUMBERS 2.46 AND 3.36 By George E. Kaattari #### SUMMARY In order to provide detailed wing-load-distribution data to high angles of attack, semispan pressure-distribution models of triangular and rectangular plan forms were tested initially at Mach numbers 1.45 and 1.97. The results of these tests were presented in NACA RM A54D19. The present report presents the results of tests on the same models conducted at Mach number 2.46 within the angle-of-attack range of 0° to 50° and at Mach number 3.36 within the angle-of-attack range of 0° to 45°. The tests were made at Reynolds numbers of 0.26×10° per inch and 0.44×10° per inch for Mach number 2.46 and at Reynolds number of 0.85×10° per inch for Mach number 3.36. Data were obtained on five models. The three basic models were two triangular wings of aspect ratios 2 and 4 and one rectangular wing of aspect ratio 2, all having thickened root sections, a structural feature generally required for supersonic all-movable wings. To evaluate the possible aerodynamic penalty of thickening the root sections, two other aspect-ratio-2 models, identical to two of the basic models but without thickened root sections, were tested. The triangular wings showed a tendency toward uniform loading for angles of attack up to 40° . Thus, as the angle was increased, the center of pressure moved toward the centroid of area. The pressure distribution in the two-dimensional flow region of the rectangular wing was in fair accord with the values given by shock-expansion theory up to the angle of shock detachment. The presence of thickened root sections on the wings had little effect on the centers of pressure and normal-force coefficients. Reynolds number effects were negligible in the angle-of-attack range of 0° to 30° . #### INTRODUCTION Since wings and controls for supersonic interceptor aircraft maneuvering at high altitudes are required to operate over a wide range of angles of attack, information is required on wing-load distribution at large as well as small angles of attack. Unfortunately, available theory on the aerodynamic behavior of wing and wing-body configurations at supersonic speeds is restricted to cases where the angle of attack is small. Detailed pressure-distribution data on wing-body components available in the literature (e.g., refs. 1 to 3) are also generally limited to small angles of attack. Little data are available for high angles of attack at supersonic speeds, particularly for wing-body models with variable-incidence wings. In an effort to provide the needed information, a program has been initiated to measure pressure distributions through a wide range of angles of attack, both on wing-body combinations and on the components (wing and body). It is hoped that the data obtained will not only provide needed design information, but will also point the way for development of theories applicable over a wide range of angles of attack. Five low-aspect-ratio wings of triangular and rectangular plan form were chosen for the initial experimental investigation. Pressure distributions on these wings through a wide range of angles of attack at Mach numbers of 1.45 and 1.97 were presented in reference 4. The present report presents similar data for Mach numbers of 2.46 and 3.36. Specifically, the data are presented in the form of: (1) tabulated pressure coefficients, (2) span-load-distribution curves for each angle of attack, (3) curves of normal force as a function of angle of attack, and (4) curves of center-of-pressure position as a function of angle of attack. #### NOTATION A wing aspect ratio C_{m} pitching-moment coefficient, $\frac{C_{N}(x_{h} - \bar{x})}{\bar{c}}$ C_{N} normal-force coefficient, $\frac{N}{qS}$ c local chord, in. c_{n} local normal-force coefficient c_{r} root chord, in. \bar{c} mean aerodynamic chord, $\frac{\int_{0}^{S} c^{2} dy}{\int_{0}^{S} c dy}$, in. - ccn span loading coefficient, in. - M free-stream Mach number - N normal force, lb - P pressure coefficient, $\frac{p-p_0}{q}$ - p orifice static pressure, lb/sq in. - Po free-stream static pressure, lb/sq in. - Pw reference static pressure, lb/sq in. - q free-stream dynamic pressure, lb/sq in. - R Reynolds number, per in. - s wing semispan, in. - S wing area, in.² - W wing (Subscript denotes model.) - x chordwise distance from leading edge at spanwise distance y, in. - xh distance from leading edge to hinge line along root chord, in. - a distance from leading edge to wing center of pressure along root chord, in. - y spanwise distance from root chord, in. - $ar{y}$ distance from root chord to wing center of pressure, in. - angle of attack, deg #### **APPARATUS** #### Wind Tunnels The investigation at M=2.46 was conducted in the Ames 1- by 3-foot supersonic wind tunnel No. 1. This single-return, continuous operation, variable-pressure wind tunnel has a Mach number range of 1.2 to 2.5. The investigation at M = 3.36 was conducted in the Ames 1- by 3-foot supersonic wind tunnel No. 2. This intermittent-operation, non-return, variable-density wind tunnel has a Mach number range of 1.2 to 4.0. In both tunnels, the Mach number is changed by varying the contour of flexible plates which comprise the top and bottom walls of the tunnels. #### Models The models and methods of mounting are identical to those of reference 4. The five semispan models consisting of three triangular wings and two rectangular wings were constructed of hardened steel. A sketch identifying the models and a tabulation of their dimensions are presented in figure 1. Two triangular wings (aspect ratios 2 and 4) and one rectangular wing (aspect ratio 2) incorporated thickened root sections faired to integral hinge shaft extensions, since such thickening is generally required for supersonic all-movable wings to maintain structural integrity between the comparatively thin wing and a large hinge shaft. In order to assess the aerodynamic penalty of thickening the root sections, two of these wings, one triangular and one rectangular, both of aspect ratio 2, were duplicated in plan form but had unthickened root sections and were provided with integral mounting flanges at their root chords. All wing sections in vertical streamwise planes were modified biconvex with maximum thickness ratios of 5 percent at midchord and with 50-percent-blunt trailing edges. Tubing was soldered into milled grooves on one surface of the wings and orifice holes were drilled from the opposite surface to communicate with the tubes at locations listed in table I in terms of spanwise and chordwise positions, y/s and x/c. The wings were mounted on a boundary-layer plate serving both as a flow reflection plane and as a means of placing the wings in a region free of the tunnel-wall boundary layer. The thickened-root wings were supported by their hinge shafts which fitted through a bearing in the boundary-layer plate. A clearance gap of 0.005 to 0.009 inch was allowed between these models and the boundary-layer plate to permit free rotation. The unthickened-root wings were mounted on a turntable in the boundary-layer plate. #### TESTS AND PROCEDURE #### Range of Test Variables All models were tested at Mach numbers of 2.46 and 3.36. Although angles of attack up to 90° were investigated, data are presented for a more limited range since it was felt that the results at the higher angles may be inaccurate due to the effects of interaction between the plate boundary layer and the leading-edge shock wave of the wings and to the tendency for the models to vibrate beyond 60° angle of attack. The maximum angles of attack for which data are presented are therefore limited to 30° to 50° , depending on the plan form, Mach number, Reynolds number, and model structural rigidity. The models were tested at $R = 0.44 \times 10^{\circ}$ per inch and $0.26 \times 10^{\circ}$ per inch at Mach number 2.46. The models were tested at only one Reynolds number $(0.85 \times 10^{\circ})$ per inch at Mach number 3.36. #### Reduction of Data The local pressures were reduced to the pressure coefficient P as shown by the following expression: $$P = \frac{P - P_0}{Q} = \frac{P - P_W}{Q} + \frac{P_W - P_0}{Q}$$ where the term $(p - p_W)/q$ is calculated directly from the test data and $(p_W - p_O)/q$ is obtained from a calibration of the wind-tunnel air stream. Calibration of the air stream indicated that the value of $(p_W - p_O)/q$ at M = 2.46 was essentially 0, but that at M = 3.36 it was approximately 0.01. Chordwise pressure distributions were integrated for each span station by a tabular method to give local span loading coefficient cc_n and local center of pressure \bar{x}/c . The absence of orifices at the leading and trailing edges of the wings required extrapolations of the pressure distribution to these
points. Linear extrapolations were used, based, respectively, on the pressures measured at the first two and last two orifices of each span station. The spanwise load distributions were similarly integrated to give total load c_N and center-of-pressure location \bar{x}/c_r and \bar{y}/s . The span loadings beyond the most outboard station of the models were approximated by assuming a parabolic load distribution tangent to the slope passing through the loading of the last two outboard stations and falling to zero at the tip. #### Validity of Data The validity of the data is affected by measuring accuracy and to an undetermined extent, at the highest angles of attack, by plate-boundary-layer interference. The slight variations from constant test conditions and inaccuracies in setting the model angle of attack caused a probable error of less than ±0.02 in the pressure coefficients at both Mach numbers. The effect of the boundary-layer plate on the semispan models was discussed in reference 4 wherein it was noted that the root-chord pressure distribution of the unthickened-root rectangular wing A. A CONFIDENT HE compared well with those predicted by shock-expansion theory at Mach numbers 1.45 and 1.97. Good agreement indicated that the boundary-layer plate had little effect at the root chord below the angle of shock detachment. The pressure distribution at the most inboard spanwise station y/s = 0.025 was also in good agreement with theory below the angle of shock detachment for Mach numbers 2.46 and 3.36. The only consistent indication of boundary-layer-plate effects was evident in the case of the aspect-ratio-4 triangular wing when tested at Mach number 2.46 for angles of attack above 25°. A reduction of about eight percent in the span loading at the root chord occurred when the Reynolds number was reduced from 0.44×10° per inch to 0.26×10° per inch. It is not clear why the other plan forms do not show corresponding Reynolds number effects at the root chord. The accuracy of the data for angles of attack above 40°, and those for wing 2 at angles above 25° at Reynolds number 0.26×10° per inch, are subject to some uncertainty. #### RESULTS Tabulations of pressure coefficients are presented for the models at M=2.46 for $R=0.44\times10^6$ per inch and at M=3.36 for $R=0.85\times10^6$ per inch in tables I(a) to I(j). The contributions to the loading and to center of pressure for each spanwise station are presented in tables II(a) to II(j) for both upper and lower wing surfaces. Summarized in tables II for each wing are also the normal-force coefficients, the center-of-pressure locations, and moment coefficients about the wing centroid of area. Figures 2 to 6 present plots of span loading coefficients, normal-force coefficients, and the center-of-pressure positions for each wing. Data taken at $R=0.26\times10^6$ per inch at M=2.46 are shown on these plots for comparison. Plotted on part (b) of figures 2 to 6 are also the values for the normal-force coefficients as predicted by linear theory. #### DISCUSSION #### Angle-of-Attack Effects It was noted in reference 4 that all five wings tested at Mach numbers 1.45 and 1.97 tended toward a uniform loading with increasing angle of attack. This was also found to be the case for the loadings on the same wings at the higher Mach numbers of the present test up to the angle of attack of 40°. However, on all wings tested beyond 40°, the pressures on the root chord decreased somewhat with a consequent movement of the center-of-pressure position outward and toward the trailing edge. This phenomenon is believed to be the result of interference between the bow shock and the plate boundary layer. The rectangular wing data are in fair accord with shock-expansion theory in the two-dimensional flow region up to the angle of shock detachment (fig. 7). # I. The CONTROL OF THE PROPERTY AND INCOME. #### Mach Number Effects On the basis of the data of the present report and of reference 4, wherein data on the same models were presented for M = 1.45 and 1.97, the following Mach number effects were evident. As would be expected the normal-force curve slope at low angles decreased with increasing Mach numbers for all wings. Comparison of the normal-force curves for a given wing in all cases shows that at the lowest Mach number the normal-force curve tends to be convex, resulting in lower normal-force curve slopes at high angles of attack; whereas with increasing Mach number, the normal-force curve tended to become concave, resulting in higher slopes at high angles of attack. No large effect of Mach number on the center-of-pressure position was noted. For the triangular wing of aspect ratio 2, in the moderate angle-of-attack range of 3° to 25°, the center-of-pressure position moved slightly forward (0.03c_r) with increasing Mach number while above 25° there was no consistent Mach number effect. In the case of the rectangular wing and of the aspect-ratio-4 triangular wing, the predominant effect of increasing Mach number was to decrease the spanwise variation with angle of attack of the center-of-pressure position. #### Effects of Thickened Root In reference 4, it was noted that at M=1.45 the span loading was not affected by the thickened root for either wing. The center-of-pressure position of the rectangular wing moved $0.01c_r$ forward due to the presence of the thickened root section while that of the triangular wing was unaffected. At M=1.97 the root-chord loadings of both wings were reduced by the presence of the thickened root so that the total normal force was reduced by 5 percent in the lower range of angles of attack (3° to 17.5°) and by less than 2 percent above 17.5° . The center-of-pressure position of the rectangular wing was again moved $0.01c_r$ forward while that of the triangular wing was unaffected by the presence of the thickened root section. The effect of thickening the root-chord section at the higher Mach numbers of the present test can be seen by comparing figures 2 and 5 for the aspect-ratio-2 triangular wings and figures 4 and 6 for the rectangular wings. At M=2.46, the span loading of the rectangular wing was negligibly affected by the thickened root chord up to 30° angle of attack. Above 30° the unthickened-root wing had unexpectedly higher chord loading at the tip, giving total normal forces 3 to 4 percent higher than those of the thickened-root wing at both Reynolds numbers. Re-examination of the corresponding data of ref. 4 for this wing at M=1.97 revealed smaller but similar effects. This anomalous behavior suggested the possibility that the aeroelastic properties of the two wings differed to a sufficient degree to give different aerodynamic loadings at the tips. The two wings were accordingly bench loaded with approximately the same load distribution as under the tunnel test conditions. No important difference between the tip deflections was noted. No adequate explanation of the change in the pressures near the wing tip which accompanied thickening the root chord has been found. For the triangular wing at M = 2.46, the thickened root caused a loss of loading at the root chord giving a 1.5 percent lower total normal force over the angle-of-attack range of 6° to 40° . At M = 3.36, the thickened root caused a loss in root chord loading so that a 2.5-percent-normal-force decrease occurred for the triangular wing. The center-of-pressure position was not significantly altered for either plan form. #### Effect of Reynolds Number In the present test the Reynolds number was varied only in the tests conducted at Mach number 2.46. No large or systematic effects of Reynolds number occurred for all wings tested in the angle-of-attack range of 0° to 25° . Above 25° angle of attack, significant variations in span loading at the root chord occurred only for wing 2. These variations are shown in figure 3(a) where the span loading differences are compared by the dashed line (R = $0.26 \times 10^{\circ}$ per inch) with the solid line (R = $0.44 \times 10^{\circ}$ per inch). This difference in span loading, however, was confined to the root chord and was probably due to the effects of Reynolds number on the plate boundary layer. #### CONCLUSIONS In reference 4, semispan pressure-distribution models of two triangular wings of aspect ratios 2 and 4 and one rectangular wing of aspect ratio 2, all with thickened root sections, and a triangular and rectangular wing, both of aspect ratio 2 without thickened root sections, were tested over a wide angle-of-attack range for M = 1.45 and M = 1.97. In the present report, tests on the same wings were conducted at M = 2.46 at angles of attack from 0° to 50° and at M = 3.36 at angles of attack from 0° to 45° . Consideration of the results over the total Mach number range of 1.45 to 3.36 leads to the following conclusions: 1. In the angle-of-attack range of 0° to 40°, all the wings showed a tendency toward uniform loading at high angles of attack. Thus, with increasing angle of attack, the center pressure moved toward the centroid of area, and span loading curves tended to assume the shape of the wing plan form. - 2. Thickening the root section caused a somewhat lower root chord loading on both the rectangular and triangular wings. The effect of this loading loss on the total normal force was small except at M=1.97 where a 5-percent-normal-force loss occurred for all plan forms. Thickening the root chord had negligible effect on the center-of-pressure position of the triangular wing and caused a slight $(0.0lc_r)$ forward shift of that of the rectangular wing at all Mach numbers. - 3. The normal-force curve slope of all wings tested showed an expected decrease with increasing Mach numbers at the low angle-of-attack range. At the lowest Mach number, the normal-force curve tended to be convex, resulting in lower
normal-force curve slopes at higher angles; whereas with increasing Mach number, the normal-force curve slope tended to become concave, resulting in higher slopes at high angles of attack. Ames Aeronautical Laboratory National Advisory Committee for Aeronautics Moffett Field, Calif., Oct. 12, 1954 #### REFERENCES - 1. Moskowitz, Barry, and Maslen, Stephen H.: Experimental Pressure Distributions Over Two Wing-Body Combinations at Mach Number 1.9. NACA RM E50J09, 1951. - 2. Berler, Irving, and Nichols, Sidney: Interference Between Wing and Body at Supersonic Speeds. Part VI, Data Report. Pressure Distribution Tests of Wing-Body Interference Models at Mach No. of 2.0. Phase II, Tests of June, 1949. Cornell Aeronautical Lab., Inc., Buffalo, CF-1569, 1951. - 3. Pitts, William C., Nielsen, Jack N., and Gionfriddo, Maurice P.: Comparison Between Theory and Experiment for Interference Pressure Fields Between Wing and Body at Supersonic Speeds. NACA TN 3128, 1954. - 4. Kaattari, George E.: Pressure Distributions on Triangular and Rectangular Wings to High Angles of Attack Mach Numbers 1.45 and 1.97. NACA RM A54D19, 1954. # TABLE I.- PRESSURE COEFFICIENTS OF WINGS (a) Wing 1; M=2.46; R=0.44×10° per inch | | | _ | | | | | | | | | | | 7 | | | | | | | | | | | | |-------|--|---|---|---|--|---|---|---|--|--|---|---|---|---|---|---|---|---|--|---|---|---|--|---| | | | | | | | Opper | eurfac | • | | | | | | | | | : | Lower : | FORFEC | • | | | | | | y/s | z/c | 50° | 450 | 40° | 35° | 30° | 250 | 50° | 15° | 100 | 60 | 3° | 00 | 30 | 60 | 70° | 150 | 30° | 250 | 30° | 35° | 100 | 1,50 | 500 | | 0.025 | 0.103
231
2359
257
583
576
576 | -0.206
201
199
198
202
198
197
196 | -0,203
-,203
-,203
-,203
-,203
-,199
-,197
-,197 | -0.196
197
197
198
200
197
194
192 | -0.191
169
181
186
190
187
184 | -0.179
150
152
160
165
174
181
179 | -0.141
127
133
145
163
167
162 | -0.092
106
114
119
141
141 | -0.066
078
085
088
100
125
125 | -0.033
044
053
062
074
094
094 | -0.004
013
027
036
049
089
083
074 | 0.027
.017
0
012
020
064
059
050 | 0.05k
.045
.032
.019
.006
044
041 | 0.090
.080
.065
.045
.045
023
023 | 0.134
.124
.106
.089
.077
.008
.017 | 0.201
.194
.177
.152
.137
.058
.078 | 0.295
.295
.484
.258
.229
.140
.156 | 0.419
.414
.410
.377
.351
.238
.257 | 529
539
530
530
369
369 | 0.7\3
.657
.666
.675
.508
.527
.578 | 0.933
.799
.786
.816
.795
.699
.690 | .870
.871
.884
.897
.784
.879 | .817
.898
.986
.985
.985 | .725
.889
.989
1.044
1.076 | | 250 | 96.
96.
96.
96.
96.
96.
96.
96.
96. | 203
205
205
206
203
203
211
198 | - 152
- 205
- 205 | - 209
- 207
- 209
- 209
- 209
- 209
- 193 | 210
208
210
206
205
203
208
186 | - 209
- 206
- 206
- 207
- 207
- 207
- 207 | - 205
- 202
- 204
- 204
- 202
- 200
- 193 | 195
186
185
195
190
190
180 | 184
155
138
135
141
149
157
155 | 134
094
088
094
109
1114
114 | 067
040
055
059
073
079
091
094 | .012
003
018
038
045
052
069
072 | .062
.036
.019
009
029
029
046 | .114
.079
.048
.025
.018
.002
019 | .170
.129
.095
.068
.051
.038
.017 | 250
262
167
133
132
555
664 | .357
.311
.270
.228
.905
.181
.150 | ************************************** | 888.44.3888 | .738
.711
.687
.649
.619
.519
.519 | .917
.859 | 1.097
1.156
1.183
1.076
1.002
.876
.815
.868 | 1.479 | 1.586 | | .500 | .125
.250
.375
.500
.625
.750
.875
.985 | 200
203
204
204
201
200
197
194 | 201
203
902
201
200
199
197
194 | 202
201
204
204
201
198
196
192 | 204
198
202
205
202
199
196
193 | 211
210
210
209
207
200
202 | 206
209
211
210
210
207
198
900 | 201
203
206
201
198
188
191 | 196
193
199
195
189
177
165
175 | 162
155
158
158
153
146
135
140 | 105
098
096
096
096
095
102 | 017
017
036
054
062
066
062 | .058
.033
0
017
027
039
047 | 189 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | .174
.144
.103
.071
.057
.050
.032 | .254
.218
.167
.137
.124
.112
.091 | .359
.327
.275
.210
.222
.208
.185 | .471
.46
.388
.354
.333
.320
.289
.269 | .587
.578
.517
.866
.462
.417
.412
.385 | .714
.709
.659
.619
.619
.549 | .841
.865
.799
.778
.765
.763
.683 | 98888 | 1.143
1.295
1.300
1.340
1.325
1.305
1.250
1.187 | 1.656
1.615
1.621
1.592
1.599 | | .750 | .156
.250
.375
.500
.750
.969 | 200
199
197
193
192
191 | 199
199
193
193
194
191 | 200
200
199
191
189
187 | 205
203
199
192
185 | 208
206
206
203
200
196 | 211
208
207
204
202
192 | 205
203
199
197
200
190 | 200
197
195
192
196
189 | 181
175
170
170
176
167 |
132
128
126
129
137
145 | 047
046
050
058
075
089 | .054
.036
.012
009
034 | .123
.098
.066
.016
.014 | .184
.157
.124
.102
.065 | .264
.238
.201
.181
.139 | .362
.3½
.308
.266
.244 | .466
.453
.422
.407
.362 | .564
.564
.549
.532
.433 | .684
.695
.681
.676
.640 | .798
.827
.821
.525
.764 | .851
.847 | 1.032 | 1.524
1.497
1.543
1.540 | | .875 | .500
.688 | 179
186 | 180
187 | 174
183 | 174
181 | 184
194 | 185
197 | 186
194 | 182
192 | 169
172 | 138
146 | 067
082 | .014
018 | .070
.042 | .134 | .212 | .321 | .437
.407 | ·553 | .688
.673 | .811
.805 | | 1.071 | | (b) Wing 1; M=3.36; R=0.85x10° per inch | | | | | | | | | | - | <u> </u> | | | | | | | | | | | | | |-------|--|---|---|---|--|--|--|--|--|--|--|--|--|---|---|---|---|---|---|---|--|--| | | <u>L</u> . | | | | Up | per sur | face | | | | | | | | | Low | er sur | face | | _ | | | | у/• | ××° | 450 | 40° | 35° | 30° | 250 | 50° | 15° | 100 | 60 | 30 | oo | 30 | 60 | 10° | 150 | 200 | 250 | 30° | 35° | kgo | 150 | | 0.025 | 0.103
.231
.359
.187
.583
.744
.872 | -0.097
094
096
099
103
094
092
093 | -0.090
088
091
088
086
087 | -0.097
091
092
096
103
099
097
093 | -0.101
100
097
096
101
098
098 | -0.092
077
078
086
092
090
089 | -0.07%
065
067
073
075
081
079 | -0.043
056
056
059
062
075
075 | -0.028
036
042
050
066
061 | -0.012
013
022
023
034
051
056 | .003
007
010
018
043 | 0.038
.023
.017
.009
.005
025
020 | 0.070
.048
.038
.031
.035
013 | 0.111
.088
.071
.065
.065
.010 | 0.181
.157
.131
.122
.110
.053
.063 | 0.293
.272
.223
.216
.196
.120
.130 | 0.129
-395
-337
-327
-313
-212
-231
-272 | 0.618
549
456
458
458
324
357
397 | 0.855
.691
.585
.550
.580
.444
.494 | 1.138
.775
.622
.576
.641
.557
.643 | .709
.594
.501
.632
.659 | 1.260
.637
.567
.564
.734
.770
.992
1.163 | | .250 | 10 29 20 20 20 20 20 20 20 20 20 20 20 20 20 | 00 | - 699 | 102
098
101
103
104
100
101 | 101
098
101
101
101
100 | 102
099
101
102
101
101 | 092
089
093
093
094
094 | - 686
- 686
- 686
- 686
- 686
- 686 | - 060
- 065
- 067
- 068
- 067
- 067 | - 022
- 031
- 042
- 046
- 049
- 057 | .009
003
015
026
036
043
043 | . 55
. 55
. 55
. 55
. 55
. 55
. 55
. 55 | .093
.066
.011
.019
.016
.003 | 11555 | 216
179
109
109
086
071 | .334
.287
.235
.196
.179
.161
.141 | .446
.408
.347
.307
.284
.256
.231
.213 | .535
.465
.447
.378
.347
.329 | .731
.704
.639
.592
.559
.508
.487 | .743
.746 | .941
1.005
1.198
1.155
1.046 | 1.095
1.166
1.409
1.757
1.595
1.324
1.175
1.093 | | .500 | .125
.250
.375
.500
.750
.875
.875
.875 | - 686 | - 098
- 093
- 094
- 095
- 096
- 079
- 088 | 102
100
099
101
103
101
091 | 100
100
101
102
102
095 | 103
101
105
103
100
092
098 | - 686
- 686
- 686
- 686
- 686
- 686 | 084
083
084
092
090
080
089 | 065
067
080
083
066
081 | - 084
- 031
- 050
- 055
- 056
- 056 | .015
.001
.028
.036
.034
.033 | .064
.042
.006
.008
.008
.003 | .191
.073
.037
.037
.037
.004 | .173
.129
.100
.073
.033
.024 | .248
.198
.163
.136
.116
.101
.099 | .345
.299
.265
.232
.208
.196
.155 | .460
.416
.362
.316
.317
.297
.275 | 596
561
575
575
575
575
575
575
575
575
575
57 | .733
.701
.650
.628
.590
.566
.525 | \$ 55.55
\$ 55.5 | 917
929
907 | 1.12*
1.205
1.171
1.13*
1.100
1.060
1.037
1.003 | | .750 | .156
.250
.375
.500
.750
.969 | 096
101
095
094
097
093 | 089
095
089
086
091
088 | 100
102
098
095
098 | 097
100
097
095
097 | 100
103
099
097
101
099 | 093
095
092
089
095 | 088
090
085
086
091
088 | 071
073
069
072
080 | 027
032
038
045
057
063 | .013
.001
009
020
035 | .067
.051
.036
.027
.002 | .139
.116
.069
.066 | .201
.177
.135
.112
.072 | .279
.246
.206
.181
.135 | .380
.351
.308
.280
.228
.193 | .484
.461
.491
.395
.342
.399 | .603
.591
.556
.535
.479 | .715
.776
.694
.678
.622 | .830
.848
.832
.823
.769 | .980
.978
.978 | 1.054
1.106
1.117
1.123
1.070 | | .875 | .500
.688 | 091
095 | 085
088 | 092 | 091
093 | 098
102 | 089
096 | 086
091 | 073
081 | 043 | 013
029 | .033 | .087 | .146
.111 | .218 | .322 | •¥35
•397 | .569
.509 | .689
.658 | .815 | | 1.051 | TABLE I.- PRESSURE COEFFICIENTS OF WINGS - Continued | | | | | | | | (c) | Wing 2 | ; M=2 | .46; F | -0.44 | ×10° p | r incl | h _ | | | | | | | | | |-------
---|--|---------------------------------|--|--|---|---|---------------------------------|---|----------------------------------|------------|------------------------------------|------------------------------|--------------------------------------|---|--|------------------------------|------------------------------|--|--------------------------------|---------------------------------|--------------------------------| | | | | | | Upper | surfac | | | | | | Т | | | | L | ver s | rface | | | | | | y/e | 200 | 45° | 400 | 35° | 30° | 25° | 50° | 15° | 100 | 6º | 3° | 00 | 30 | 60 | 100 | 15° | 50° | 25° | 30° | 35° | 400 | 450 | | 0.025 | 0.103
131
132
132
132
132
132
132
132
132
13 | -0.200
194
196
197
212
202
190 | 179
180
200
191 | -0.199
169
174
176
204
201
173 | -0.182
-116
-156
-159
-195
-187
-175 | -0.156
130
144
189
167 | 105
116
124
181
170 | 073
086
068
166 | - 036
- 051
- 052
- 150
- 133 | .009
006
012
124
105 | .039 | .078
.061
.041
087 | .055
.071
075 | .173
.116
.116
013
028 | 0.279
.265
.238
.196
.004
.068 | .381 | .505
.505
.467
.168 | .701
.683
.617
.289 | .909
.870
.790
.451 | 1.087
1.022
.954
.620 | 1.160
1.061
1.092
.784 | .991
1.090
.910
1.208 | | .250 | 36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50
36.50 | 204
206
207
210
211
208
208 | 198
200
203
204
201 | 207
208
207
209
209
209
210
203 | 199
200 | 186
186
167
189
190
188
188 | 165
167
167
172
172
172
173 | 136
137
144
147
147 | 100
102
111
115
117 | 054
063
067
074 | 005 | .051
.034
.011
004
018 | .048
.048
.027
.012 | .165
.133
.097
.077
.059 | .255 | .158
.382
.332
.286
.251
.229
.193
.153 | .469
.410
.377
.347 | -554
-529
-469
-409 | .931
.840
.779
.706
.663
.610
.538 | 1.010 | .803 | 11.330 | | -500 | 125
500
500
500
500
500
500 | 209
203
206
204
201 | 198
200 | 200
206
207
206
205 | 201
197
197
197
195 | 194
189
188
188 | 170
169
173
167
166 | 141
151
150 | 104
122
137 | 038
050
076
094
109 | 014 | .019
.010 | .102
.056
.022 | .207
.182
.119
.074
.036 | .332
.268
.206
.152
.112 | .501
.426
.324
.263
.215 | .457
.387 | .812
.723
.613
.726 | .874
.756 | 1.020 | | 1.205 | | 1750 | .375
625 | 193
196 | | | - 195 | 187
185 | | 155 | ~.130 | 086 | 027
051 | 002 | .040 | | .284
.215 | -342 | . 82 | .726
.630 | .874
.785 | -937 | 1.141 | 1.156 | | | | | | | | | (d) Win | g 2; M. | 3.36; | R=0.85 | 410° pe | r inch | _ | | | | | | | | |-------|--|--|---|---|---|--|---|--|--
---|--|--|--|--|--------------------------------------|--|--|--|--|---| | | | | | | Uppe | ır surfi | lce | | | | | | | L | mer s | urface | | | | | | y/s | x/° | 40° | 35° | 30° | 25° | 200 | 150 | 10 ⁰ | 6° | 30 | % | 30 | 6° | 10 ⁰ | 150 | 50 ₀ | 250 | 300 | 35° | 140° | | 0.025 | 0.103
.231
.372
.487
.792
.872 | -0.101
098
099
096
108
102
090 | -0.098
092
093
094
098
098 | -0.099
090
093
095
107
105 | -0.093
083
087
091
105
101
095 | -0.080
064
071
076
103
099
098 | -0.067
053
061
063
101
096 | -0.028
021
028
028
090
082 | 0.001
.003
007
010
081
073
060 | 0.033
.030
.016
.010
068
059 | 0.068
.063
.045
.033
056
043 | 0.102
.088
.072
.057
.044
035 | 0.151
.133
.113
.089
027
016
017 | 0.231
.215
.189
.155
.005
.025 | .331
.305
.073
.090 | .484 | 0.679
.683
.623
.554
.201
.301 | 0.890
.947
.807
.744
.320
.496 | .901
.883 | 1.405
.909 | | .250 | .125
.260
.375
.500
.625
.750
.875
.966 | 104
103
103
106
109
109
100 | 095
100
099
103
103
103
103 | - 105
- 105 | - 099
- 103
- 104
- 105
- 103
- 100
- 100 | 089
094
096
098
098
097
098 | 065
066
090
092
095
094
094 | 049
056
061
068
072
070
072
077 | 022
033
041
048
054
056
058
061 | .010
004
015
023
029
032
034
045 | .049
.036
.023
.009
.002
003
010 | .000
.000
.000
.000
.000 | .147
.123
.104
.081
.072
.054
.042 | .249
.215
.189
.158
.139
.118
.099 | .336
.301
.273
.233
.206 | .546
.485
.437
.385
.357
.325
.290
.243 | .716
.639
.587
.522
.591
.458
.390 | .899
.814
.754
.684
.647
.592
.537
.438 | .981
.902
.846 | 1.266
1.176
1.110
1.072
1.005
.918
.859
.784 | | .500 | .125
.250
.500
.750 | 106
101
102
100
099 | 102
098
099
099
098 | 106
103
104
103
103 | 101
101
101
101 | 087
091
098
097
095 | 079
084
092
091
091 | 043
052
066
076
060 | 013
027
046
059
069 | .022
.003
021
039
049 | .062
.010
.010
.007 | .106
.082
.043
.020 | .164
.135
.089
.062
.037 | .273
.232
.161
.141
.106 | .244 | .617
.592
.453 | .799
.738
.997
.911
.439 | .989
.913
.763
.665 | 1.112
1.075
.921
.825
.731 | 1.112 | | .750 | .375
.625
.900 | 099
096
098 | 097
096
096 | 103
102 | - 099
- 098
- 098 | 094
094
090 | 088
092
086 | 058
069
069 | 034
051
063 | 008
027
047 | .028
.004
021 | .061
.035
.001 | .113
.080
.040 | .210
.166
.112 | | .543
.465
.336 | .715
.623
.468 | .882
.784
.624 | 1.026
.943
.775 | 1.199
1.114
-954 | ## TABLE I.- PRESSURE COEFFICIENTS OF WINGS - Continued (e) Wing S; M=2.46; R=0.44×10⁶ per inch | | | | | | | | | | | , | | 7 | | | | | | | | | |-------|--|--|--|--|--|--|--|--|--|----------------------------|---|--|--|--|--|--|---|-------|--|--| | | | | | Up | per sur | face | | | | | | | | | Lover | surfs | ic e | | | | | у/в | x/c | 40° | 350 | 300 | 25° | 500 | 150 | 100 | 6° | 30 | 00 | 30 | 60 | 100 | 150 | 20° | 250 | 300 | 35° | 40° | | 0.025 | 0.054
.141
.242
.617
.805
.953 | -0.185
172
192
208
210
188 | -0.188
174
193
208
210
188 | -0.164
172
183
201
204
183 | -0.143
179
172
200
197
178 | -0.104
118
139
188
184
166 | 086
105
175
171 | 0.004
033
051
149
142
122 | .022
.002
118
109 | .072
.053
091
079 | .117
.097
067
0 5 6 | .176
.150
039
026 | 0.320
.246
.221
.004
.026 | 0.426
.346
.320
.059
.105
.160 | 0.575
.494
.491
.163
.237 | | .951 | | 1.461
1.451
.853
.948 | 1.070
1.512
1.529
1.121
1.183
1.161 | | .250 | .054
.141
.242
.367
.492
.617
.805 | 202
197
199
200
203
199
202
196 | 201
197
199
202
203
199
203
196 | 178
183
189
192
190
189
189 | 170
175
181
184
182
181
183
183 | 148
153
160
163
166
169
173 | 128
136
142
147
152
159 | 092
097
105 | 026
042
050
059
069 | 051 | .092
.072
.048
.038
.026
.013
019 | .153
.131
.105
.093
.079
.061
.021 | .230
.207
.176
.163
.145
.124
.072 | .336
.313
.280
.268
.238
.212
.141
.085 | .517
.478
.450
.426
.379
.344
.235 | .739
.694
.673
.605
.500
.503
.334 | .990 | 1.207 | 1.576
1.392
1.233
1.111
.975
.816
.759 | 1.559 | | .563 | .054
.141
.242
.367
.492
.617
.805 | 200
196
197
204
199
200
197
192 | 200
196
198
205
201
201
199
194 | 175
183
188
196
192
190
190 | 165
173
179
187
183
179
181
182 | 138
148
158
169
175
167
163 | 120
133
150
158
162
156 | 067
088 | 086
095 | 035
047
058 | .126
.093
.060
.026
.002
011
024
039 | .194
.156
.118
.077
.052
.033
.033
.033 | .277
.231
.188
.145
.111
.092
.071 | .395
.342
.292
.239
.202
.177
.152 | .573
.510
.453
.391
.312
.308
.269
.228 | .794
.729
.660
.576
.511
.460
.400 | | 1.206 | | 1.516 | | .875 | .054
.141
.242
.367
.492
.617
.805 | 196
198
196
198
195
198
204
197 | 196
198
196
199
195
198
204
199 | 179
187
185
188
183
185
194
191 | 170
176
172
176
164
171
180
183 | 149
154
150
154
141
146
159
169 | 125
118
129 | 069
082
064
085
078 | 027
052
050
049
051
058 | 035 | | .155
.131
.101
.059
.036
.018
005
021 | .231
.207
.165
.115
.085
.061
.027 | .337
.315
.254
.197
.156
.118
.082 | .25
.478
.397
.318
.253
.213
.172
.147 | .754
.667
.561
.448
.378
.333
.290
.270 | 1.029
.851
.713
.587
.513
.462
.425
.388 | 1.035 | 1.215 | | (f) Wing 3; M=3.36; R=0.85×10° per inch | | $\overline{}$ | | | | | -, | , , | | | | | | | | | | | | |-------|--|---|---|--|---|---|---|--|--|---|--|--|--|--|--|--|---|--| | | | _ | | ט | pper su | rface | | | | | | | I | ower s | urface | ı | | | | у/в | x/c | 35° | 300 | 25° | 200 | 150 | 100 | 60 | 30 | 00 | 30 | 60 | 10° | 15° | 200 | 250 | 30° | 35° | | 0.025 | 0.054
.141
.242
.617
.805 | -0.082
083
086
096
098 | -0.086
087
090
095
099 | -0.076
078
083
092
097
089 | -0.062
069
069
082
090 | -0.040
040
050
087
090
083 | -0.001
010
024
074
077 | | .060
.037
054 | | .102
020
018 | 0.299
.217
.170
.014
.017 | 0.412
.310
.260
.063
.076
.090 |
0.553
.459
.387
.136
.173
.210 | 0.707
.615
.561
.221
.318
.360 | 0.907
-786
-776
-373
-517
-530 | 1.185
1.012
1.015
.558
.724
.701 | 1.780
.227
.124
.783
.917
.851 | | .250 | .054
.141
.242
.367
.492
.617
.805
.953 | 090
088
091
093
095
093
090 | 092
092
093
098
098
097
092 | 087
085
088
090
094
093
092
089 | 075
073
076
080
086
084
078 | 062
064
070
076
081
082
083 | 038
041
049
056
063
065
067 | 002
010
021
031
040
044
048 | .026
.017
.001
010
018
024
028 | .058
.053
.040
.027
.006
.010 | .116
.099
.081
.064
.050
.047
.033 | .181
.158
.138
.120
.102
.079
.079 | .280
.255
.227
.204
.186
.185
.148 | .425
.396
.366
.339
.322
.310
.248
.197 | •595
•557
•516
•507
•476
•458
•363
•298 | .815
.765
.736
.712
.656
.629
.497 | 1.091
1.050
.992
.927
.874
.776
.644 | 1.440
1.332
1.223
1.135
1.016
.886
.778 | | .563 | .054
.141
.242
.367
.492
.617
.805
.953 | 089
092
095
095
096
096
092 | 091
095
095
098
095
097
095 | 087
089
089
094
094
090 | 075
079
080
087
087
081
081 | 060
065
070
078
085
081
083 | 058
063
067
067 | .001
007
031
039
045
053 | .034
.023
.010
006
017
025
036 | .074
.061
.044
.023
.013
.003
003 | .129
.112
.094
.071
.033
.038
.007 | .193
.176
.148
.124
.105
.087
.064 | .292
.269
.214
.213
.185
.162
.138 | .444
.416
.384
.345
.305
.274
.245
.218 | .619
.589
.551
.497
.437
.415
.368 | .846
.812
.774
.696
.639
.589
.528
.479 | 1.148
1.099
1.010
.902
.812
.745
.671 | .212
.027
1.198
1.061
.972
.896
.799
.715 | | .875 | .054
.141
.242
.367
.492
.617
.805
.953 | 087
090
090
091
091
093
093 | 091
093
099
096
096
096
097 | 084
088
088
094
090
090
092 | 074
079
076
087
083
084 | 059
064
069
076
076
078
078 | 048
055
056
059 | .005
004
017
032
038
043
046 | .035
.021
.009
010
023
028
036 | .073
.046
.020
.005
004
019 | .128
.113
.093
.057
.031
.016
001 | .197
.175
.148
.108
.074
.052
.033 | .297
.272
.241
.181
.142
.114
.090 | .447
.416
.370
.290
.240
.207
.172 | .626
.589
.511
.414
.351
.314
.277
.248 | .855
.789
.672
.563
.494
.449
.411 | 1.117
.969
.845
.731
.649
.594
.548 | .089
1.191
1.044
.908
.826
.773
.705 | TABLE I. - PRESSURE COEFFICIENTS OF WINGS - Continued (g) Wing 4; M=2.46; R=0.44×10⁶ per inch | | | | | | | Uppe | r surfe | c e | | | | | ļ | | | | 1 | Lover | surfac | • | | | | | |-------|--|--|--|--|--|--|---|--|---|-----|--|---|---|---|--|----------|---|---|---|--|--|--|---|---| | y/s | x/c | 500 | 450 | 400 | 35° | 30° | 250 | 20° | 15° | 100 | 60 | 3° | 8 | 30 | 6° | 100 | 150 | 50° | 250 | 30° | 350 | 40° | 450 | 50° | | 0.025 | 0.103
.231
.359
.467
.783
.744
.872 | -0.193
192
192
186
193
203
205 | -0.210
210
206
201
193
201
193 | -0.206
204
198
194
194
198
188 | -0.201
195
186
181
185
199
184 |
-0.192
170
177
168
163
170
180
175 | -0.176
128
149
146
143
151
160
161 | -0.123
096
115
121
120
129
138 | 9 8 8 9 9 9 9 9 | | -0.012
031
030
049
061
073 | 0.016
.011
003
026
036
036 | 0.049
.082
.031
.001
.002
028
028 | 0.084
.076
.064
.031
.032
.017
.001 | 9899958 | 11111111 | 0.295
.293
.276
.235
.229
.205
.178
.166 | 0.412
.420
.408
.361
.349
.324
.291 | 66588388 | 0.710
.695
.705
.663
.619
.566 | 0.853
.831
.930
.835
.837
.771
.772 | .891
1.002
1.003
953 | 971
971
1.051
1.069
1.042
1.038
968 | 0.484
.842
.993
1.057
1.055
1.035
1.029 | | .250 | .10A
.229
.35A
.500
.625
.750
.875
.969 | 189
187
187
191
193
193
193 | -210
-213
-211
-210
-210
-210
-205
-174 | 206
212
210
209
206
206
206 | 206
210
211
210
206
206
206 | - 206
- 209
- 209
- 209
- 209
- 206
- 207
- 208 | 199
202
202
202
202
202
202 | 189
184
184
186
186
180
171 | 181
181
165
165
164
164
159 | | 056
039
059
069
079
078
062
081 | .012
005
023
041
055
054
060
059 | .053
.037
.017
025
034
034 | .114
.080
.053
.019
.011
.002
004 | .151
.055
.055
.055
.055
.055
.055
.055 | | .352
.322
.287
.219
.201
.184
.176 | .470
.447
.401
.341
.314
.297
.285 | | 74 750 655 55 55 55 55 55 55 55 55 55 55 55 55 | .928 | 1.247
1.199
1.078 | 1.539 | 1.76 | | .500 | .125
.250
.375
.500
.625
.750
.875 | 190
191
193
193
196
199
201
203 | - 208
- 208
- 208
- 209
- 209
- 209
- 206 | 207
207
207
206
209
209
208
204 | 207
207
209
207
208
209
209 | - 210
- 210
- 210
- 210
- 200
- 205
- 205
- 18 | 205
207
207
208
208
208
203 | 199
199
199
199
197
195
175 | 194
194
195
195
189
186
190 | | 099
090
090
092
097
097
099 | 003
019
010
057
066
069
072
067 | \$ 5555
1 555
1 555 | .101
.082
.050
.022
.012
003
010 | .135
.056
.059
.059
.059
.051 | | .369
.316
.268
.229
.212
.201
.183
.167 | .478
.434
.362
.346
.334
.312
.296 | \$ 5.55 \$ 5.55 £ | .700
.651
.651
.560
.561
.561
.563 | .826
.822
.802
.777
.753
.733
.710
.685 | .967
.978
.978
1.006
1.019 | 1.359
1.328
1.266 | 1.642
1.647
1.602
1.550
1.484 | | .750 | .156
.250
.375
.500
.750
.969 | - 206
- 208
- 207
- 211
- 215
- 221 | 207
206
205
203
203 | 206
205
203
203
202 | - 206
- 205
- 204
- 202
- 201
- 200 | 206
206
203
201
201 | 206
206
203
199
197
192 | 200
200
196
195
192
188 | 193
193
189
189
189
189 | | 120
117
115
120
130
133 | 044
046
041
056
078
067 | .083
.041
.015
008
035
049 | .153
.099
.067
.045
.013 | .213
.155
.123
.096
.061 | | .390
.326
.299
.270
.226
.213 | .190
.132
.114
.386
.351
.322 | .543
.539
.521
.473 | .705
.647
.669
.650
.606 | .818
.773
.804
.785
.748
.710 | .864
.932
.921 | | 1.35
1.476
1.48
1.47 | | .875 | .500
.668 | - 221 | 199
197 | - 198 | 198
196 | 197 | 134
193 | 190
187 | 189
185 | | 135 | 079 | .014
210 | .074 | .132 | | .310 | .129 | | .664
.649 | .786
.775 | | 1.037 | | (h) Wing 4; M=3.56; R=0.85×10⁶ per inch | | | | | | Upper | surfac | | | | | 1 | | | | Lever | eurís. | :• | | | | |-------|--|--|---|--|--|--|--|--|--|--|--|---|--|---|--|--|---|--|---|---| | 7/0 | 9 X |
45° | ¥0° | 35° | 30° | 250 | 200 | 15° | 100 | æ | 8 | €° | 100 | 150 | 50° | 250 | 30° | 35° | ¥0° | 150 | | 0.025 | 0.103
233
256
257
258
258
258
258
258
258
258
258
258
258 | -0.102
105
097
098
100
103
098 | -0.100
101
094
096
096 | -0.097
093
097
093
093
099
101 | -0.094
068
093
097
098
093
097 | -0.068
077
061
064
092
098
090 | -0.0%
0%
071
088
081
083
083 | -0.050
053
062
061
063
073
073 | -0.027
-037
-045
-046
-057
-062
-063 | -0.013
018
025
031
034
042
047 | 0.029
.025
.036
.009
.019 | 0.109
.096
.061
.060
.056
.039
.034 | 28.83
25.83
25.88
8.88
8.88
8.88
8.88
8.88
8.88
8.8 | 0.293
.262
.233
.197
.194
.169
.149 | 0.429
.390
.367
.308
.303
.294
.269 | 0.634
.530
.586
.455
.453
.444
.421
.385 | 0.871
.698
.713
.633
.647
.622
.584 | 0.913
666
860
761
867
867
867
867
867
867
867
867
867
867 | 0.941
.787
.855
.600
.839
.796
.841 | 0.838
.870
.811
.741
.741
.728
.773
.821 | | .250 | 19 20 20 20 20 20 20 20 20 20 20 20 20 20 | 109
108
110
111
105
106 | 104
103
104
107
100
102
101 | 103
104
105
106
102
103 | 101
101
101
104
104
098
099
102 | 100
100
100
101
097
096
100 | 092
091
091
093
095
090
091 | 690
691
695
695
695
695 | 055
060
063
068
070
067
069 | 020
031
037
046
053
053
056 | .058
.032
.004
.005
.020 | .152
.115
.083
.058
.039
.035
.026 | 385338888 | .303
.246
.212
.157
.150 | .443
.429
.359
.364
.265
.265
.244 | .579
.567
.496
.436
.409
.381
.373 | .734
.714
.669
.593
.535
.539
.536 | .748 | 1.017
.880
.931 | 1.660
1.464
1.284
1.113 | | .500 | इंडिड्डिड्डिड्डिड्डिड्डिड्डिड्डिड्डिड्डिड | 109
111
109
109
112
106
107
109 | - 103
- 107
- 105
- 102
- 105
- 106
- 103 | 105
107
105
104
106
106
102 | 104
105
103
101
103
100 | 100
103
101
100
100
100
100 | 094
097
096
097
097
097
097 | 095
087
088
092
092
093 | 064
063
069
073
077
077
081 | 021
030
042
050
057
066
066 | .079
.051
.023
.003
019
019 | .186
.138
.102
.076
.055
.050
.030 | .256
.265
.166
.131
.110
.092
.079 | .363
.312
.269
.229
.206
.163
.160 | .478
.426
.369
.340
.306
.262
.262
.244 | .897.505.450
.555.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450
.556.450 | .753
.717
.662
.617
.566
.576
.573 | .856
.815
.167
.139
.139
.688 | .699
.675
.638 | 1.125
1.106
1.070 | | .750 | 150
350
350
350
360
360 | 112
111
107
113
109
109 | 100
106
100
105
103 | 102
106
102
107
104 | 099
104
098
105
100 | 100
104
100
103
102
101 | 093
098
093
096
096 | 088
090
087
088
091
089 | 068
068
070
077
076 | 030
032
042
049
061
068 | .084
.084
.080
.084 | .215
.180
.140
.109
.066 | 98 88 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .391
.358
.310
.271
.219 | 1965
1965
1965
1965
1965
1965
1965
1965 | .602
.505
.509
.509
.418 | .717
.713
.686
.650
.597
.569 | 877
846 | 1.050
1.066
1.053
1.019 | 1.204 | | .875 | .500
.688 | 109
109 | 101
102 | 102
103 | 100
100 | 101
101 | 096
096 | 086
088 | 076
077 | 047
057 | .036
.018 | .147
.114 | -217
-181 | .320
.364 | .¥31
.399 | .546
.510 | .677
.650 | .815
.796 | 1.049 | 1.225 | TABLE I.- PRESSURE COEFFICIENTS OF WINGS - Concluded (i) Wing 5; M=2.48; R=0.44×10⁶ per inch | | | | | | Ūp. | per sur | face | | _ | | | T | | | | Lo | ver su | rface | | • | | | |-------|--|--|--|--|--|---|--|--|--|--|--|---|--|--|--|--|--|---|---------------|--|---|---| | y/s | x/o | 12.50 | #0° | 350 | 30° | 250 | 20º | 150 | 100 | 60 | 30 | oo | 30 | ₽° | 100 | 150 | 50° | 250 | 300 | 35° | 400 | 42.50 | | 0.025 | 0.054
.141
.242
.617
.805
.953 | -0.131
128
134
123
136
134 | -0.187
187
187
183
197
200 | -0.178
183
187
179
192
197 | -0.170
177
176
169
180
176 | -0.152
165
169
165
179
182 | -0.131
143
149
151
169
165 | -0.101
117
126
134
155
158 | -0.052
-071
05
101
123
127 | -0.003
023
036
064
089 | .016
.003
033 | 0.100
.065
.052
.005
018 | 0.164
.121
.106
.052
.027
.017 | 0.231
.188
.171
.107
.080 | 0.339
.298
.260
.196
.165 | 0.493
.462
.452
.336
.301
.286 | 0.670
.671
.659
.508
.473 | 0.955
.999
.909
.699
.639 | 1.202 | 1.481
1.101
1.003 | 1.532 | | | .250 | 054
141
242
367
492
617
805
953 | 128
145
140
143
150
143
142 | 181
191
192
196
195
193
192
189 | 174
183
187
192
191
189
189 | 160
172
176
179
177
178
178 | 152
166
171
178
177
175
174 | 137
145
150
164
163
160 | 111
120
131
140
148
152
153
148 | 064
075
088
102
113
120
127
139 | 009
022
039
058
071
060
090 | 038
052
063 | .073
.051
.024
.005
012 | .156
.133
.168
.679
.053
.032
.032 | .226
.203
.174
.143
.111
.069
.069 | .314
.318
.284
.248
.203
.175
.153
.137 | .525
.491
.451
.399
.344
.313
.269 | .749
.714
.662
.573
.511
.471
.437 |
1.104
.980
.882
.778
.690
.636
.583 | 1.184 | 1.359
1.210
1.063
.991 | 1.267
1.168
1.111
1.031 | 1.881
1.674
1.493 | | .563 | .054
.141
.242
.367
.492
.617
.805
.953 | 131
141
141
135
144
138
138 | 192
190
194
197
193
191
193 | 185
183
189
193
188
188
191
189 | 171
172
177
181
175
178
178 | 157
162
171
179
176
173
177 | 134
140
153
162
163
161
160 | 103
117
130
143
149
151
148 | 053
067
088
103
115
123
126
130 | .004
014
040
063
075
086
095 | | .110
.082
.047
.018
004
017
029 | 11 12 64 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | .241
.212
.169
.132
.099
.061
.061 | .374
.324
.277
.230
.189
.169
.141
.117 | .557
.506
.446
.387
.337
.303
.259
.224 | .781
.728
.647
.572
.500
.442
.386 | | 1.206 | 1.384
1.220
1.075
.965 | 1.523
1.373
1.236
1.132
1.063 | 1.715
1.585
1.464
1.348
1.245
1.164
1.038 | | .875 | .054
.141
.242
.367
.492
.617
.805
.953 | 133
135
135
136
139
136
144
137 | 189
186
186
185
185
185
188 | 180
179
179
176
179
185
182 | 167
167
167
167
167
170
174
171 | 162
163
157
155
156
167
171 | 142
146
141
137
133
133
146
155 | 117
124
124
124
124
115
124
137 | 070
080
086
090
095
087
090 | | 029
030
- 030
- 045
- 045
- 055 | | .149
.069
.042
.011
.001
012
022 | .221
.192
.149
.093
.054
.037
.017 | 312
303
212
175
101
072 | .519
.15
.392
.318
.248
.210
.173
.158 | .748
.689
.575
.461
.373
.327
.294
.275 | 1.068
.887
.742
.616
.523
.477
.444
.425 | 1.082
.918 | 1.533
1.310
1.148
1.016
.900
.854
.772 | 1.372
1.372
1.216 | 1.898
1.655
1.468
1.301
1.173
1.101
.980 | (j) Wing 5; M=3.36; R=0.85×10⁶ per Inch | | | | | Ū | pper su | rface | | · | | | | | L | over s | urface | | | | |-------|--|---|---|---|---|---|---|---|--|--|---|--|--|---|--|--|---|--| | у/• | x/2 | 35° | 30° | 25° | 50° | 15° | 100 | 6° | 30 | 00 | 30 | 60 | 100 | 15° | 20° | 250 | 30° | 35° | | 0.025 | 0.054
141
242
617
805
953 | 9 1 1 1 9 | 8555555
955555
955555
95555
95555
95555 | 90
- 094
- 095
- 0 | -0.079
086
090
098
100 | -0.059
-0.079
-0.089
-0.093 | -0.033
044
052
072
074
076 | -0.001
026
026
049
053 | -0.031
.012
001
030
035 | 0.068
.043
.028
004
009 | 0.116
.084
.066
.028
.021 | 0.170
.132
.110
.069
.064
.051 | 0.257
.209
.196
.140
.133 | 0.371
.328
.328
.257
.257
.219 | 0.540
.464
.497
.400
.386
.357 | 0.713
.671
.694
.584
.553
.535 | 0.947
.943
.966
.828
.783 | 1.195
1.372
1.229
1.062
.963 | | .250 | .054
141
242
367
492
617
805 | 100
107
101
105
107
107 | - 103
- 103
- 105
- 102
- 103
- 105
- 101 |
097
098
101
100
101
101 | 087
090
095
095
096
096 | 074
076
083
085
089
093
090 | 041
048
058
060
077
080 | 009
018
029
030
047
057
061 | . 035
. 035
. 035
. 035
. 036 | .067
.035
.020
.005
008
017 | 16.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86.86
86
86
86
86
86
86
86
86
86
86
86
86
8 | .154
.154
.154
.155
.155
.155
.155
.155 | .270
.244
.217
.184
.161
.139
.115 | .\$1\$
.389
.35\$
.312
.283
.253
.223
.227 | 66.535.385.38 | .819
.765
.719
.653
.596
.573
.526 | 1.113
1.044
.953
.865
.817
.761
.720 | 1.294 | | .563 | .054
.141
.242
.367
.492
.617
.805 | 099
103
104
106
103
105
105 | 096
104
103
103
103 | 094
097
100
100
100
100 | 085
088
093
095
096
096 | 69
69
69
69
687
687 | 33399999999999999999999999999999999999 | 000
000
000
000
000
000
000
000
000
00 | \$ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | .061
.063
.064
.064
.064
.067
.083 | .124
.110
.088
.067
.046
.046
.089 | .182
.166
.141
.116
.093
.072
.072 | .281
.260
.228
.196
.165
.140
.115 | .433
.408
.374
.330
.284
.253
.226
.178 | .619
.588
.544
.430
.396
.355
.292 | .839
.802
.743
.667
.604
.555
.456 | 1.149
1.080
.982
.881
.781
.710
.614 | 1.499
1.324
1.180
1.090
.943
.877
.817 | | .875 | .054
.141
.242
.367
.492
.617
.805 | 100
102
101
102
104
102 | 098
101
099
099
101
101 | 094
097
094
096
099
099
099 | - 082
- 085
- 088
- 089
- 094
- 094
- 096 | 069
073
073
077
084
084
082 | 037
044
050
057
063
065
061 | 003
021
033
044
044
046 | .033
.028
.005
011
025
029
035 | .072
.057
.042
.021
004
013
019 | .122
.106
.087
.057
.026
.008
009 | .182
.161
.139
.103
.064
.044
.028 | 275
252
220
173
194
.095
.076 | .413
.397
.353
.283
.223
.162
.151 | .614
.572
.501
.411
.344
.306
.273 | .832
.764
.657
.579
.483
.439
.390 | 1.111
.963
.840
.733
.638
.585
.532
.503 | 1.370
1.172
1.028
.902
.798
.744
.694 | TABLE II.- SPAN LOAD DISTRIBUTION, NORMAL FORCE, AND CENTER OF PRESSURE OF WING | | | | | | | | | | | | | | (= |) #i= | 1; 14 | 4.41 | B=0 , | 14NO | per l | Set | | | | | | | | | | | | | | | |--------------|-------------------|------------|-------------|------------|--|----------|-------|-----------------|---------------|---|---|----------------|----------|--------------|-------|--------------|--------------|---------------|---|------------|--|-------------|---|----------|-------------------------------------|---|--|--------------|----------|----------------|---------------------------------------|--|--|-----------------| | | | | | | CB, | section | | al-fm | 104 | rrie1 | enta | | | | | _ | | | | | i/o, ≖ | mtine | Own Las | of p | | • | | | | | | Estir | e ving | | | | | Uppe | | PR.DO | | _ | Love | - | 9.00 | | | Pot | | - | | | Uppe | * === | | | | Lon | - | (TEM | | $\overline{}$ | Both | - | 2000 | | | П | | \Box | | \mathbb{Z} | 0.003 | 0.850 | 0.300 | 0.750 | 0.875 | 0.023 | 0.850 | o.500 | O. T50 | 0.615 | 0.007 | 0.170 | 9-500 | 0.750 | 0.819 | 0,005 | 0,050 | 0.700 | 0.170 | 0.575 | 98 | 0.270 | 0-500 | 0.750 | 0,875 | 0.005 | 0.270 | 0.500 | 0.750 | 0,875 | OM. | | ≯ ≁ | 7/2 | | 4553443445°~ | 音音等语字语字语音音 | 安長有為時報報報報報 | 25588888888 | いるを登りませんがい | 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | 長母養式生養養養 | のできる。 | 有完全企业工作员 | 多种设备等的 | 1995 1995 1995 1995 1995 1995 1995 1995 | .11
.85
.65
.45
.45
.45
.45 | 医阿耳角连接线 | 5月3月月月1日 | BERREISE SES | | 新新新新新 | 盏 | 拉拉拉拉拉的 | 100 A | はなるないのないない | 50000000000000000000000000000000000000 | 建建建建 | San | 安宁等原本的原则 | 499
-505
-508
-508
-508 | 0.459
.469
.463
.471
.476
.477
.476
.477
.476
.477
.476
.476 | ************************************** | 全部工作的 | 13000000 | 自当主事事条款 | · · · · · · · · · · · · · · · · · · · | 100
100
100
100
100
100
100
100
100
100 | 600
600
600
600
600
600
600
600
600
600 | 美民贸商实际日亮 | | | | | | | | | | | | | | | (b) | W to(| 1; M | 3.26 | R-0. | 62/10 | per I | noh | | | | | | | | | | | | | | | |-------------------------------------
---|---------------------|--------------------------------------|--|------------|--------------------------------------|----------|----------|-----------------|---------------|--|---------------------------------|---------|---|---------------------------------------|-------|-------|---------|---------------|-------------|--------------|---------|-----------------|--------|---|----------|------------|--------|---|---------------|---|--|------|---------------| | | | | | | - , | meatic | e nom | -1-1- | | efficati | ent | | | | | | | | | | c/c, = | mrL10n | oem ted | of p | , 1000 | | | | | | | in Library | Wing | | | | | 777 | e7 ma | rface | | | Las | _ ~ | Caree | | | Bet | N PHART | | | | - | er evel | | | \Box | Long | - | | | <u> </u> | Both | Turks | -000 | | ļ. — | | [.] | T | | \sim | 0+005 | 0,650 | 0,500 | 0.170 | 0.00 | 0.085 | 0.850 | 0.500 | 0.750 | 0.07 | 0.005 | 0.200 | 0,500 | 0.750 | 0.47 | 0.005 | 0.250 | 0,500 | 0,750 | 0.575 | 0.005 | 0.250 | 0.500 | 0.730 | 0,017 | 0,005 | 0.270 | 0.500 | 0.150 | 0.015 | Car | G- | ¥/er | 7/- | | ડ્રૈક્ષણમાં મુદ્ધ દ્ધ કૃત્ય. | 0.083
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055 | 5258837599 3 | .001
.109
.109
.117
.117 | \$15 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | .053
.109
.103
.508
.608 | 6月月日 7条日 | BURSES 8 | 多名名的名称 包 | 计划设计设计 | 00.00000000000000000000000000000000000 | 100
150
150
150
150 | 多數的多數的 | 电影响 电影响 电影响 电影响 电影响 电影响 电影响 电影响 电影响 电影响 | · · · · · · · · · · · · · · · · · · · | 主教官工事 | 医多位免疫 | 2000年8月 | 以外的特殊的 | 主题题录 | 建建建建建 | 各於多當多於義 | \$5.55 £ £ £ 55 | 香香香香香香 | 0.467
4460
460
460
460
460
460
460
460
460
46 | ない | 896884546E | 188355 | 1995年の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の | 光本在北方市 | 1965 S. | \$ 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | | 有信息的注意 | | | | | | ء ريه | et tilon | - | 1-10-0 | 90eF | Pictor | ta . | | | 1 | | | 1/• , | pee tij | - | ter of |)hr-on | ure | | | | | Mot1: | क्ष्याम | E | |----|-------|----------|-----------|--------------------------|----------|---------|---------------|-------|--------|--------------|--------|------------------------------|----------------|---------|------------|-------|----------------------|-------|----------------------|--------|-------------|--------------|-------------|-------|-------|----------------------|--------------|----| | | | - | enz (pete | • | [] | Lever . | rur Desc | | 1 | beh m | r Laws | | Ţ-, | jèber i | - | | 1 | _ | | | | MF = | -fleet | | | | 1. | Γ | | /: | 0,00 | 0.850 | .50 | £ | 9 | 0.870 | 0.900 | 0.170 | 0,000 | ÷. | 0.500 | 0.750 | 0.005 | 0.550 | 0,500 | 0,170 | 0-065 | 0.850 | 0.700 | 0.70 | 0.00 | 0.270 | 0.500 | 0.730 | Opr | ۵. | F/or | 7/ | | | 0.030 | | | 33 | e.ego | 0.013 | 0.016
.110 | 0.04 | 9.050 | 0.007 | 0.093 | 0-057 | 0.111 | | | 0,146 | 0.552 | 0.103 | 0.146 | 4 | 0.398 | | | 0,448 | 0.005 | 0,00 | 0.632 | | | 1 | .000 | | 134 | 120 | .143 | .177 | 3 | | 1 | *303 | 150 | .901
.903
.939
.607 | . 185
. 185 | 主主主主主主主 | 2 | 133 | .514
.451
.453 | 福 | .450
.440
.445 | 325 | | 新加加斯斯 | 110 | 18.53 | 끯 | -008
-018
-017 | .61 | Ι. | | 1 | 170 | 1 | 语 | 122 | | - 6 | 盗 | :31 | | E-156 | 2 | 25 | 擅 | 惡 | 霊 | 1 | :53 | | 132 | 答 | | 摇 | | | :32 | - (45)
- (45) | .642
.642 | | | : | 1/4 | <u>a</u> | 123 | .00
.00
.00
.00 | ,T16 | .70) | -618
-164 | .65 | | . 94 | 777 | 1.017 | 100
100 | 115 | 13.78.75 E | 建 | .156
.156
.167 | ななな | .159
.467
.473 | 學學學 | ,444
644 | 5 | のない | | :772 | | .61 | J. | | | 篮 | 40 | 228 | .107 | 1.039 | 1.049 | 1.04 | 1.050 | 綋 | 1.256 | 1.47 | 1,856 | 200 | *** | 🚟 | *** | .460
.461 | 123 | 湯 | .10 | .157 | 127 | .446
170 | 1:7 | 1.111 | .046 | 1.6s. | 1: | | | _ | | | | | | | | | | (4) | Wing | ı, M | 4.56 | n −0. | \$5:10° | per l | ash . | | | | | | | | | | | | |---------|----------------------------------|-----|----------------|-------------------|-------------------------|---------|---------------------------------------|----------------------------|-------|--------|----------|--|---------------|-----------------|--------------|----------------------------------|--------|----------------|-------|-------|--------|-------|--------|---|-------|--------------------------|--|------------------------------|-----| | | | | | 1 | 1 11, 111 | otion : | <u></u> | -fores | 90e[f | lalent | • | | | ļ | | | 1/4 | , seat | - m | - | t pros | pille | | | | | Intin | , réag | | | | | * | - | - | | 1 | (ent) | per l'un | • | 1 | loth m | r l'ete | | | h er | | | | Liver | - | • | | Both : | | | | | | Γ. | | < | 0.0 | n o | .250 | 0.500 | 0.150 | 0.085 | 0.870 | 0.500 | 0.150 | 0.025 | 0.450 | 0.500 | 0.750 | 0,065 | 0.850 | 0.500 | 0.170 | 0.005 | 0.250 | 0.500 | 0.750 | 0.005 | 0.250 | 0.500 | 0.750 | CX | G _E | 2/4 | 7/- | | 8484848 | 0.00
.00
.00
.10
.10 | 3 | 5.55 FEEE 3.59 | LEFETS 388 | 664833 3 | SEE:3 | · · · · · · · · · · · · · · · · · · · | 第185 左近 486
第188 左近 486 | 28423 | 1097 | 84438438 | 57 1 2 3 2 3 5 3 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 | 学生学校的基 | 正美女男女女女女 | 主法法院 | 85.55.54.55.56
85.55.55.55.56 | 是學生是學是 | 新花的新花香物 | 記録 | | عواج ا | داک ا | 1 110 | 0,448
,449
,446
,449
,453
,459 | 提出 | श्रीवृज् त्व्वहरू | 55655555555555555555555555555555555555 | .633
.635
.639
.639 | | ## TABLE II.- SPAN LOAD DISTRIBUTION, NORMAL FORCE, AND CENTER OF PRESSURE OF WING - Continued | (e) Wing 3; M=2,46; R=0.44x10° per | ב בסול ה | |------------------------------------|----------| |------------------------------------|----------| | | | | | Cb, 80 | ction | por mej | -force | coeff | leient | : | | | | | | ž/ | c, sec | tion o | ester | of pre | ***** | | | | | Motile | e Yinq | ı | |---------------------------------|-----------------|---|--------------|--------|---|--|--------------|---------|------------|--|--------|--|-------|--------|--------|---|---------------------------------------|----------|--|---------|-------------|-------------|---------|--------|------|--------------------------------------|--|--| | | | - | 140 | • | | Lower | and the | • | | Both s | uriese | | | Оручи | serie. | C • | Γ. | Lover | | - | | - | our fac | 20 | | | | Γ | | / <u>s</u> | 0.025 | 0-270 | 0-763 | o.đr | 0.025 | 0.270 | 0.763 | 0-815 | 0.025 | 0.150 | 0.563 | 0.875 | 0.025 | 0.270 | 0.563 | 0.875 | 0.025 | 0.270 | 0.563 | 0.875 | 0.025 | 0.250 | 0.963 | 0.875 | Oy | G. | ₹/c ₊ | 7/= | | ବୃଷ୍ଟସ୍ପର୍ଷ୍ଟ୍ର ଷ୍ଟ୍ରଷ୍ଟ | 聚聚基基基金基金 | 8 6 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | BEBBBBBBBBBB | 自身最多最高 | 180000000000000000000000000000000000000 | 1931
1931
1931
1931
1931
1931
1931
1931 | .114
.206 | 会議会を当ち会 | - February | .194
.328
.506
.506
.900
1.069
1.222 | 1000 | .148
.250
.119
.509
.764
.929 | EEEEE | 大学工艺工艺 | .478 | 130 mm 4 | · · · · · · · · · · · · · · · · · · · | なながれ おばな | 155
159
149
149
140
140 | 各多数数色数量 | 多多名称 | 李华年 等 3 多 5 | が場所は極 | おなりをなる | .6-0 | -011
-047
-026
-037
-057 | . 150
. 445
. 445
. 445
. 446
. 440 | SE S | #### (f) Wing 3; M=3.35; B=0.55d0 per toch | | | | | 1 544 | tdos s | ormal- | Corps | 000000 | letent | | | | | | | 2/0 | , Mot | LOID 040 | eter o | r pres | litre | | | | | Dette | v ving | | |--|-------------------|--------------|------------------------------|--------------|--------|----------------------|--------------------------------------|----------------------|----------------------|--------|--------------------------|---|----------------------
---|---------|--------------|-------|----------|--------|----------------------|-------------------|--------|--|--------------|--|--------------|---------------------|-------------------------| | | , | Upper . | eri'es | • | 1 | OTHER S | MET AC | | 7 | loth s | T ÎNO | | | lpper : | er l'eo | | , | over : | mrfao | • | 1 | joth # | . Xace | • | | | T | | | 叉 | 0.095 | 0.990 | 0.563 | 0.075 | 0.025 | 0.230 | 0.563 | 0.877 | 0.025 | 0-250 | 0.763 | 0.075 | 0.025 | 0.270 | 0.563 | 0.875 | 0.025 | 0.270 | 0.563 | 0.879 | 0.0£5 | 0.250 | 0,763 | 0.875 | GH. | ٠. | ≅/ _{*~} | 7/- | | 200
200
200
200
200
200
200
200
200
200 | 8558358
535358 | हुंकड्डहान्त | .000
.000
.000
.000 | .059 | 36459 | .090
.172
.296 | .090
.173
.896
.411
.612 | -074
-147
-274 | .126
.994
.350 | 3688 | 233
233
235
235 | -36
-36
-36
-36
-36
-36
-36 | -393
-379
-379 | 150 A | 克克莱克 | 美国委员会 | 3669 | -447 | فوحا | .907
.422
.422 | .38
.38
.10 | があるが | ル
サ
イ
サ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ
イ | .999
.409 | 0,063
139
230
361
365
857 | .009
.015 | , 100
140
140 | . 172
. 173
. 173 | | | | | | | 00 | , 200 1 | ton no | r=1-n | erce c | effic: | lect | | | | - 1 | | | | | | /a, == | ation | dan pan | of pr | | , | | | | | | Metir | • wing | : | |------|-------------|------|----------------|------------|-------|----------------|--------------|-------|--------|--------|---------------|-------|-------|------------|-------|-------|-------|--------|--------|-------|--------|--------|--------------------|-------|--------|-------|--------|--------------|-------|-------|----------|-------|--------|------------------| | Η- | | Upp | T 496 | (mee | | | Lov | | 1200 | | | Boti | nart | 761 | | | 99 | er sur | Čare a | | | Lov | 4 F | fuoc | | | Both | mort | 1000 | | | | 5/- | [_a , | | 0.1 | tes k | .850 | 0.500 | 0.770 | 0.873 | 0.085 | 0.070 | 0.500 | 0.130 | 0.875 | 0.005 | 0.850 | 0.500 | 0.750 | 0.813 | 0.025 | 0.270 | 0.700 | 0.170 | 0.617 | 0.085 | 0.250 | 0.700 | 0.170 | 0.875 | 0,00 | 0.250 | .,00 | 0.750 | 0.875 | 9 | ď | 5/0− | " | | | | | | | | | | | 0.056 | 0.060 | 0.060 | 0.012 | 0.083 | 0.108 | 0.135 | 0.160 | 0,497 | 0.705 | 0.378 | 0,400 | d, | ەدىد ق | 0.480 | ţ | o. 488 | o.‡68 | 0.134 | 0.448 | 0.393 | 0.435 | 0.079 | | | | | } . | 93 | .070 | .096 | .135 | وا1. | .071 | 7000 | .091 | 309 | .118 | -157 | .152 | .387 | .944 | .807 | -201 | -100 | -370 | - 597 | .424 | .HO | מא. | .449 | .459 | +477 | . 412 | .460 | .413 | | .447 | .166 | .003 | | ١. | | 1. | 106 | -371 | .198 | .201 | .203 | .230 | 246 | 277 | | .e96 | -356 | -117 | .449 | . 103 | .199 | .48 | .160 | , ka | . 100 | .136 | .100 | .461 | .469 | 179 | . 197 | .479 | .147 | 154 | .¥35 | .472 | .113 | .006 | .654 | ١. | | 13 | 134 | | .197 | 207 | .eoi. | .351 | .30 | -372 | .304 | JA15 | -105 | .549 | .569 | .aoci | .619 | -03 | .440 | 1.0 | . 42 | . 30 | .484 | . 470 | . 478 | . 190 | . 200 | 1.475 | .161 | .154
.163 | .23 | . 33 | : ;; | .01 | .678 | ш | | ۱. | 166 | .504 | .205 | .23 | .208 | | 1.57 | | | | -460 | | .703 | .166 | 110 | .443 | | . 140 | | . 440 | 485 | - 19 | | | | | 協 | 179 | :蓝 | .20 | .04 | .00 | | | | 13 | 100 | 팖 | -\$07
-\$07 | 214
214 | 911 | :55 | .602
.842 | | | | .829
1.010 | | | 55 | .es | . 44 | | | .425 | | 109 | 120 | 138 | .200 | | | امة: ا | 106 | 1.66 | | 1.00 | | | | | 13 | | Ei, | .207 | | | | 1.07 | | .096 | | | 1.046 | | | 1.093 | | | | .47 | | | | .517 | | | | 173 | .704 | 1.73 | .500 | 1,103 | .015 | 676 | L | | 14 | 91 <u>0</u> | .233 | .208 | .216 | .213 | .936 | 1.899 | | | | | | | | 3.036 | | 149 | .Mg | . 27 | , Nã | -533 | .477 | .514 | .719 | -715 | | | .501 | -504 | -202 | 1,50 | .003 | | | | 1 .: | 186 | .186 | -195 | -199 | -807 | .856 | 1.323 | 1.540 | 1.43 | 1.533 | ւտ | 1.509 | 1.733 | 1.600 | 1,50 | .77 | .778 | . 767 | .764 | | .766 | .470 | - 495 | .724 | -217 | .564 | .447 | .705 | .921 | -747 | 1.10 | 038 | .55 | ı | ### (h) Wing 4; M=3.30; B=0.8540° per inch | l | | | | c ⁿ , | arctie | | 1-12 | C. 50- | flei | unt | | | | | l | | | | 1 | / 0, ₽ | rtion | centr-1 | n pr | ** | • | | | | | l | Brille | whele | | |---|-------------------------------|--|--------------------------|------------------|--|-------|--|--------|-------|-------------|--------------------------------------|--|--------------------------------------|---------|-------|--------------|--------|---------------|-----------|---------------|---------------|---|-------|-------|--------|----------|--------|--------|---------|--------------------------|----------------|--|----| | | Oppor | ung faqe | • | | | Leve | - Per | (Table | | | Bet | h suri | popular . | | | Upp | - | 200 | | | Lçan | e nei | - | | | Bosh | Par C | - | | | | | Г | | 0.0 | 25 0.290 | 0.500 | 0.750 | 0.879 | 0.005 | o-290 | 0.500 | 0.750 | 0.875 | 0.007 | 0.270 | p.500 | 0.750 | 0.875 | 0.005 | 0.370 | 0.500 | 0-750 | 0.877 | 0.005 | 0.250 | 0.500 | 0.750 | 0.013 | 0.085 | 0.250 | 0.500 | 0.750 | | | C _m | ¥/e _F | 3/ | | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00 .000
60 .100
99 .100 | 190
190
190
190
190
190
190
190
190
190 | 100
140
157
158 | はないながら | 2. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 150
150
150
150
150
150
150
150
150
150 | 18.5 | 14000 | 30 3 % ft 6 | .164
.306
.421
.763
.781 | 10000000000000000000000000000000000000 | .963
.579
.490
.617
.751 | 第20 NAT | | F8 55 | 555656 | 克里克里克里 | E 6 6 6 6 | 現場 | 美国的新国际 | · 1000 1000 1000 1000 1000 1000 1000 10 | 音音音音 | 克克曼克多 | ESESS. | 25253828 | 是原在政政政 | 李子子李子子 | \$25555 | 306
319
307
777 | .010 | 14. A. | | ## TABLE II .- SPAN LOAD DISTRIBUTION, NORMAL FORCE, AND CENTER OF PRESSURE OF WING - Concluded ## (i) Wing 5; M=2.46; R=0.44×10⁶ per inch | ļ | | | (| n, see | otion : | cornel | -force | coeff | icient | | | | } | | | ī/e, | sect. | Lota der | iter o | î pres | ure | | | | | Intir | e wing | | |---|---|--|---|-------------------------------------|---|---|---|---------|--|----------------------|---|---|--------------------------------------|--------------|--|------------------------------|---------------------------------|-------------------|--|---------------|--------------------------------------|---|--------------------------------------|---|----------------------|---------------------------------|--|--------------------------------------| | Ī | 1 | Upper | suring | , | ; | Lower | surfac | • | | Both en | Cface | • | | Upper : | aurfac | • | | LOWER E | urfaç | • | 1 | loth st | rface | •
| | | | | | * | 0.025 | 0.250 | 0.563 | 0.875 | 0.025 | 0.250 | 0.563 | ر78.0 | 0.025 | 0.250 | 0.563 | 0.875 | 0.025 | Ω.250 | 0.563 | 0.875 | 0.025 | 0.250 | 0.563 | 0.875 | 0.025 | 0.250 | 0.563 | 0.875 | CM | C _M | I/cr | 7/= | | 3.6.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8 | 0.044
.079
.122
.178
.178
.194
.196
.211 | .078
.192
.156
.172
.188
.190
.203 | E 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | .08
.093
.146
.145
.175 | 109
206
359
543
748
954
1.191 | .109
.206
.334
.531
.730
.892
1.048 | .167
.348
.514
.703
.873
1.635 | 96 95 B | .188
.328
.517
.721
.942
1.152
1.402 | .187
.328
.510 | .184
.320
.500
.683
.888
1.069 | 137
249
110
581
775
967
1.172 | .459
.460
.454
.474
.473 | .454
.454 | 435
433
433
433
435
436 | .387
.491
.430
.439 | 170
173
177
165
168 | \$55555
\$5555 | 459
453
452
447
436
444 | EEEEEE | \$57
\$57
\$54
\$54
\$56 | 1588
158
158
158
158
158
158
158
158
158 | .454
.450
.444
.436
.437 | 385
,400
,421
,425
,439
,439 | .295
.466
.644 | 009
016
034
039
059 | ###################################### | .453
.460
.461
.469
.465 | ## (j) Wing 5; M=3.36; R=0.85×10° per inch | | | | C, | g, se c | tion n | ormal- | force | coeffi | cient | | | | | | | ā/a | , sect | ion ce | nter o | f pres | sure | | | | | Entir | e wing | : | |--|---|------------------------------|--------------|--------------------------------------|------------------------------|----------|----------|--|--------------|--------------------------------------|--|--|---------------------------------|--|----------------------|-------|-------------------|----------------|--|--------------------|--------------------------|--------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|---------------------------------|---------------------------------| | | 1 | Јурет s | WELACE | | I | over I | wrface | • | I | oth m | trface | | ī | jaber : | urface | | I | CVST B | urface | 1 | Bo | th su | faces | | | | | | | y/s | 0.025 | 0.250 | 0.563 | p .8 75 | 0.025 | 0.250 | 0.563 | 0.8T5 | 0.087 | 0.250 | 0.563 | 0.875 | 0.025 | 0.250 | 0.563 | 0.675 | 0.025 | 0.250 | 0.563 | 0.875 | 0.025 | 0.250 | 0.563 | 0.875 | C _N | C _{ER} | ≢/c _r | ÿ/ s | | 30
100
100
200
200
300
300 | 0.028
.050
.074
.097
.106
.116
.116 | 88
88
96
196
111 | -076
-078 | .045
.080
.090
.109
.111 | .078
.156
.260
.436 | 958 ± 95 | 85.48.88 | 5 35 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | .126
.230 | .139
.237
.379
.537
.796 | .139
.237
.383
.543
.723
.928 | .117
.204
.335
.480
.634
.807 | 455
458
450
442
442 | 85 to 100 | .424
.429
.423 | 386 | 468
468
479 | इ इइइइइ | 34 S S S S S S S S S S S S S S S S S S S | 404
429
4336 | 463
465
473
473 | 450
450
450
450 | .435
.439
.443
.447
.450 | .497
.409
.425
.431
.433 | .127
.220
.356
.506
.676 | .00
.00
.00
.00
.00
.00
.00
.00
.00
.00 | 435
440
446
449
458 | 469
469
469
467
463 | *Wings having duplicate plan forms but mounted on turntable and without thickened root section CINTERCOLUMN AND AND | Α | 2 | 4 | 2 | |-------------------|------|------|------| | C _r in | 8 | 4 | 4 | | 5 in | 4 | 4 | 4 | | Xp/C _f | .667 | .667 | .500 | | S in ² | 16 | 8 | 16 | | d in | ,875 | .625 | ,625 | | f In | ,250 | .350 | ,400 | | - | | | ' | | | | c — | | | | | |-----|------|------|------|------|------|------|------|------|------|------|------| | x/c | 0.00 | .100 | .200 | .300 | .400 | 500 | .600 | 700 | .800 | .900 | 1000 | | t/c | 000 | .018 | .032 | .042 | .048 | .050 | ,049 | .046 | .041 | ,034 | .025 | | | Root chord fillet
ordinate t/c _r | | | Typical root chord fillet fairing | |------------------|--|--------|--------|-----------------------------------| | x/c _r | Wing I | Wing 2 | Wing 3 | | | 0.00 | 0,000 | 0,000 | 0,000 | | | .10 | .025 | .038 | .046 | | | .20 | .048 | .072 | .085 | | | .30 | .068 | .102 | .119 | | | .40 | ,085 | ,126 | .143 | 1 rod | | .50 | .099 | .144 | .156 | 16 | | .60 | .107 | .155 | .145 | d | | .70 | .106 | ,152 | .124 | Rear view | | .80 | .086 | .122 | ,097 | | | .90 | .059 | .081 | .063 | 5 W 7 | | 1.00 | .025 | .025 | .025 | - Andrew | Figure 1.- Wing dimensions and identity. (a) Span loading. (b) Normal force. Figure 2.- Aerodynamic characteristics of wing 1. ## I. VOOVETEDENTEAL (c) Center-of-pressure position; M= 2.46. (d) Center-of-pressure position; M = 3.36. Figure 2.- Concluded. (a) Span loading. Figure 3.- Aerodynamic characteristics of wing 2. A MOONETDENTIAL (c) Center-of-pressure position; M = 2.46. (d) Center-of-pressure position; M = 3.36. Figure 3.- Concluded. A MANUFACTURE OF THE PARTY T (a) Span loading. (b) Normal force. Figure 4.- Aerodynamic characteristics of wing 3. (c) Center-of-pressure position; M = 2.46. (d) Center-of-pressure position; M = 3.36. Figure 4.- Concluded. # CONTIDENTIAL Figure 5.- Aerodynamic characteristics of wing 4. # 1. Turner and the (c) Center-of-pressure position; M = 2.46. (d) Center-of-pressure position; M = 3.36. Figure 5.- Concluded. # SIL CONFIDENTIALS Figure 6.- Aerodynamic characteristics of wing 5. CONFIDENTIAL (c) Center-of-pressure position; M = 2.46. (d) Center-of-pressure position; M = 3.36. Figure 6.- Concluded. (b) M = 3.36. Figure 7.- Comparison of experimental chordwise pressure distribution with shock-expansion-theory values for the two-dimensional-flow region of wing 5. # A. LICONE DENETAT